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One  way  for  breast  cancer  diagnosis  is  provided  by  taking  radiographic  (X-ray)  images  (termed  mam-
mograms)  for  suspect  patients,  images  further  used  by  physicians  to  identify  potential  abnormal  areas
thorough  visual  inspection.  When  digital  mammograms  are  available,  computer-aided  based  diagnos-
tic  may  help  the  physician  in  having  a  more  accurate  decision.  This  implies  automatic  abnormal  areas
detection  using  segmentation,  followed  by  tumor  classification.  This  work  aims  at  describing  an  approach
to  deal  with  the  classification  of  digital  mammograms.  Patches  around  tumors  are  manually  extracted
to  segment  the  abnormal  areas  from  the  remaining  of  the  image,  considered  as  background.  The  mam-
abor features
irectional features
ammogram

lassification
oise
roximal support vector machines

mogram  images  are  filtered  using  Gabor  wavelets  and  directional  features  are  extracted  at  different
orientation  and  frequencies.  Principal  Component  Analysis  is  employed  to  reduce  the  dimension  of fil-
tered  and  unfiltered  high-dimensional  data.  Proximal  Support  Vector  Machines  are  used  to  final  classify
the  data.  Superior  mammogram  image  classification  performance  is  attained  when  Gabor  features  are
extracted  instead  of  using  original  mammogram  images.  The  robustness  of  Gabor  features  for  digital
mammogram  images  distorted  by  Poisson  noise  with  different  intensity  levels  is  also  addressed.
. Introduction

Image manipulation is commonly used in image processing and
attern recognition field. Image manipulation may  include quality
nhancement, filtering, segmentation, feature selection or extrac-
ion and dimensionality reduction, to mention only a few. When it
omes to image classification, it is desirable to keep discriminant
eatures and discard non-relevant features that may  negatively
ffects the classification performances.

Mammographic images are X-ray images of breast region dis-
laying points with high intensities density that are suspected
f being potential tumors. Early diagnostic and screening is cru-
ial for having a successful medical treatment or cure. Typically,
asses and calcium deposits are easily identified by visual inspec-

ion. These deposits appear much denser (highly attenuate X-ray)
han others types of surrounding soft tissues. Malign tumors are
sually associated to unusual smaller and clustered calcification.

ther calcification types, including diffuse, regional, segmental or

inear, correspond to benign tumors. Such calcification are termed
s microcalcification. Automatic tumor classification would require

� Expanded Paper from the work presented at the 2nd International Sympo-
ium on Applied Sciences in Biomedical and Communication Technologies held
4  September 2009.
∗ Corresponding author.

E-mail addresses: ibuciu@uoradea.ro (I. Buciu), agacsadi@uoradea.ro
A. Gacsadi).
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the segmentation of the microcalcification area from the X-ray
image, followed by recognition or classification of the segmented
area into one of theses three classes: normal tissue (absence of
tumor), benign or malign tumor. Automatic tumor detection is
extremely challenging as the suspicious calcification or masses
appear as free shape and irregular texture, so that no precise pat-
terns can be associated to them. In addition, the presence of more
or less prominent blood vessels and muscle fibers may seriously
degrade the accuracy of identification or tumor recognition.

Several techniques have been proposed to analyze, detect or to
extract features from mammogram images. Strickland and Hahn
[1] proposes a two-stage method based on wavelet transforms for
detecting and segment calcifications. In the first stage the image
is decomposed into four sub-bands ((LL, LH, LH, and HH) without
downsampling. Detection is next performed for the HH sub-band
and the combination of LH+HL. Four octaves are computed with
two inter-octave voices for finer scale resolution. The second stage
improves the accuracy of segmentation, where detected pixel sites
in HH and LH+HL are dilated and weighted before taking the inverse
of the wavelet transform. By so doing, the microcalcifications are
greatly enhanced in the resulting image and an appropriate thresh-
old can be used to segment the tumor zone. Haar wavelets along
with PCA are proposed by Swiniarski et al. [2] to extract rele-
vant features, and rough sets methods are further employed to

classify the resulting features. Recently, the authors extended the
work by extracting independent component features, followed by
rough sets method for feature selection and data reduction, and,
ultimately, a rule-based classifier is employed for a final decision

dx.doi.org/10.1016/j.bspc.2010.10.003
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
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3].  Sun et al. [4] developed an approach to decompose regional
local region within an image containing the tumor area) images
sing 2D Quincunx wavelet transform with the first four even-
ecomposition levels. For every selected decomposition image, five
eatures, i.e. mean, variance, compactness, fractal dimension and
ntropy are globally extracted. A decision tree classifier is further
tilized to label the images. The wavelet decomposition is carried
ut on residual image (contrast enhanced abnormalities within a
ormal structure suppressed background) instead of original raw
ammogram images. Zaiane et al. [5] proposed an approach where

tatistical set of features (including mean, variance, skewness and
urtosis are used as features for classification. To classify a set
f features, association-rule based classifiers are applied. Lemaur
t. al. [6] developed a method based on wavelets derived from
atzinger polynomial with high Sobolev regularity index. Wavelet

ecomposition is also used by Ferreira and Borges [7,8] to decom-
ose a mammogram image into different frequency sub-bands. By

mposing a certain threshold, some low frequency coefficients are
elected followed by a class signature building process. This proce-
ure is applied to the basis image. When a test image (unknown
ammogram image) comes, the same steps are performed, i.e.
avelet decomposition, low frequency coefficient selection and

lass signature assignment. To classify the unknown image, dis-
ances between the signature corresponding to the unknown image
nd each of the signature corresponding to the basis images are
omputed. Finally, the unknown mammogram is classified based
n the lowest distance. Several distance metrics are investigated,
ncluding the Euclidean, norm of absolute value and Mahalanobis.
o classify mammogram images, Wei  et al. [9] employed Support
ector Machines (SVMs), Relevance Vector Machines (RVM) and
ernel Fisher Discriminant (KFD). Sheshadri and Kandaswamy [10]
ttempted to classify breast tissue using simple image statistics
uch as its intensity level of histogram (including mean, standard
eviation, smoothness, third moment, uniformity and entropy).
mara and Qader [11] developed a system that combines dimen-
ionality reduction module (using principal component analysis),

 feature extraction module (using independent component analy-
is) and a feature subset selection module (using rough set model)
o reduce the effect of data inconsistency. Finally, a fuzzy classi-
er is integrated into the system to label subimages into normal or
bnormal regions. K-means algorithm is employed by Martins et al.
12] to segment a mammogram images and co-occurence matrix
o describe the texture of segmented structures. However, the
oal of that work was rather to discriminate between masses and
on-masses structure with the help of support vector machines.
lthough promising, their approach is heavily dependent on the

nitialization of the number of clusters used by K-means. Moreover,
he computation of co-occurence matrix is quite time consuming
imiting the approach for real-time applications.

More related techniques (including both segmentation and clas-
ification approaches) can be found on the recent publication [13],
hich provides an excellent survey on digital mammogram pro-

essing techniques.
The aforementioned papers refer to the cases where images

re not corrupted by noise. When images are acquired, different
oise types may  occur in the image acquisition process, affecting
oth the visual quality and classification performance [14]. Many
oise suppression techniques assume that the noise is normally
istributed and additive (Gaussian noise) [15]. A specific noise that
ay  occur for the X-ray images satisfies a Poisson distribution, gen-

rally caused when the finite number of particles that carry energy
such as electrons in an electronic circuit) is small enough to give

ise to detectable statistical fluctuations in a measurement [16].
his noise is typically named quantum noise. Its magnitude varies
cross the image as it depends on the image intensity. This specific
haracteristic makes removing such noise very difficult. Aach and
essing and Control 6 (2011) 370– 378 371

Kunz [17] applies several spatial and temporal filters to suppress
poisson noise from low-dose X-ray. The authors proposed a novel
motion-adaptive temporal filter based on a motion adaptive mean
square error criterion. A general framework for studying several
noise types (including Poisson) was derived by Bravel et al. [18].
Using local measurements of the mean image intensity, the noise
standard deviation and its associated error is approximated using
robust statistical estimators. Frosio et al. [19] present a method
to estimate the Poisson noise variance based on the maximization
of an appropriate likelihood function, which takes into account a
sensor model leading to a closed-form analytical expression for the
estimate of the sensor gain. A 2D fuzzy Wiener filter is employed by
Toprak [20] to suppress the noise. While suppressing the noise, the
sharp-edge and the image details are preserved. The novelty resides
in using a fuzzy approach to distinguish noise pixels from image
ones. Finally, Mencattini et al. [21] used the well known wavelet
shrinkage denoising approach to preserve image edges. A proper
threshold is picked up to keep or remove image details, thus dis-
carding noise. The noise variance is estimated through a fuzzy logic
system under the assumption of white gaussian additive noise.

This paper aims at describing a digital mammogram classifica-
tion approach, where the manually segmented areas representing
abnormal tissues are filtered with the help of Gabor wavelets with
several orientations and frequencies. Unlike other wavelets, Gabor
functions exhibit specific orientation properties that can be eas-
ily tuned by modifying the Gaussian parameters. The resulting
database with the filtered images is next decomposed using PCA
for dimensionality reduction. Proximal support vector machines
are further employed to classify the PCA-Gabor filtered in one of
the three classes: normal, benign and malign. PCA is also applied
directly to the unfiltered image patches, as baseline. We  should
note that, Rangayyan et al. [22] also proposed the use of Gabor
wavelets. However, there are many differences between the two.
The major differences resides in the way we evaluate the Gabor
features. Rangayyan et al. used Rose diagram to evaluate the direc-
tional properties of Gabor filters using the whole space image.
We rather went one step further and analyzed the discriminative
characteristics of such directional features with respect to tumor
classification, employing advanced classifiers such as proximal sup-
port vector machines (PSVM) applied to image patches extracted
around image artifacts. While their approach only allows image
interpretation with no automatic tumor classification, ours does.
Their purpose was  to analyze and interpret the symmetry between
the left and right mammograms, while our goal was to analyze
the discriminant power of Gabor features with respect to various
frequency scales and orientations.

The experiments were also conducted when X-ray mammogram
images are corrupted by quantum noise with different noise lev-
els. The mammogram images with known labels are assumed to
be acquired in ideal conditions, while the mammogram images
with unknown classes are corrupted by quantum noise. Therefore,
we  only altered the test mammogram images. The experiments
reveal great robustness for Gabor features against noise. We  must
stress that no preprocessing step for noise suppression was  taken
into account. We  should also note that, this paper presents an
extension of our previous work described in [23], where 30×30
image patches were used for classification. The extension refers to
the following issues. The experiments implied higher dimensional
patches, i.e. 60×60 to investigate the patch size versus the classi-
fication performances. The work in [23] only reported the average
recognition rate without taking care of the nature of misclassified
patches in terms of false negatives and false positives. We  have

addressed this issue by computing the confusion matrix. The work
described by [23] limited the number of Gabor feature orientations
to four. Here, we have extended the orientation range to eight val-
ues, for comparison. Another major difference is our investigation
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Figure 1. Patches of 140×140 pixels extracted from mammographic images. Top
72 I. Buciu, A. Gacsadi / Biomedical Signa

f how the performance of classification is affected by the quan-
um noise, when both filtered and unfiltered image patch sets are
onsidered.

The remaining of the paper is structured as follows. Section
 briefly presents the image database used in out experiments
ollowed by the mathematical description of the Gabor wavelets
nd short PCA description. In Section 3, the experiment setup is
escribed and the experimental outputs are illustrated. Section 4
oncludes the work.

. Material and Methods

.1. Material: Mammogram Database

The mammogram images used in our experiments were taken
rom the Mammographic Image Analysis Society (MIAS) [24]. The
atabase contains 322 samples labelled as one of the three cate-
ories: normal, benign and malign. There are 208 normal images,
3 benign and 51 malign cases (which are considered abnormal).
ach image of 1024×1024 pixels is centered. The abnormal cases
re divided into six categories: microcalcification, circumscribed
asses, spiculated masses, ill-defined masses, architectural dis-

ortion and asymmetry. However, we only considered here the
hree classes aforementioned when classifying the images. For each
bnormal case, the coordinates of center of abnormality are pro-
ided along with the approximate radius (in pixels) of a circle
nclosing the abnormality. The widest identified abnormality cor-
esponds to a radius of 197 pixels, while the tightest abnormality
as a radius of 3 pixels. For some cases, calcification are widely dis-
ributed throughout the breast image rather than focused at a single
ite. Here, the center locations and radii have been omitted. Know-
ng the location and the approximate size of abnormality allows us
o manually extract subimages (patches) with proper dimension
epresenting the tumor zone.

.2. Methods

.2.1. Gabor Wavelets
2D Gabor wavelets have been extensively used in computer

ision applications for modeling of biological-like vision systems.
tudies have shown that Gabor elementary functions are suitable
or modeling simple cells in visual cortex [25]. Other nice property
s provided by their optimal joint resolution in both space and fre-
uency, suggesting simultaneously analysis in both domains. The
abor wavelet orientation property makes it very suitable for sev-
ral applications, including image texture analysis [26,27] or image
etrieval [28]. A complex Gabor wavelet is defined as the product
f a Gaussian kernel with a complex sinusoid described as:

k(z) = kTk
�2

exp(−kTk
2�2

zTz)(exp(ikTz) − exp(−�
2

2
)), (1)

here FkcPCA and k is the characteristic wave vector:

 (2)

ith

� = 2− �+2
2 �, 1exϕ� = �

�

8
. (3)

The parameters � and � define the frequency and orientation
f the filter. Given an image I(z), a 2D Gabor wavelet transform is
efined as the convolution of this image I(z) with a family of Gabor

lters with several orientation and frequency values:

k(z) =
∫ ∫

I(z′) k(z − z′)dz′ (4)
row represents 5 samples for the normal case, middle row represents 5 samples for
the benign case, while the bottom row illustrates 5 samples for the malign case.

2.2.2. Principal Component Analysis
Principal Component Analysis (PCA) [29] was picked up as

dimensionality reduction for both Gabor features and original raw
patch images. The latter case has been chosen as baseline. Given a
high dimensional database, PCA is a well-known technique to keep
relevant low dimensional information in terms of data covariance
matrix, while discarding information associated to low eigenval-
ues. Particular details on PCA application to our case are described
in Subsection 3.3.

3. Results and Discussion

3.1. Experiment Setup

To discard irrelevant (background) information like breast con-
tour, patches of 140×140 pixels surrounding the abnormality
region were extracted from the original 1024×1024 pixels images.
The patches size assures that, for most abnormal cases not only the
abnormality region is captured but also the surrounding area, pro-
viding us information about the abnormality shape. For the normal
case, the patches were extracted from random position inside the
breast area. Figure 1 illustrates 5 samples per class (case).

Each 140×140 image patch is downsampled to either 60×60
or 30×30 pixels, respectively, to reduce the data dimension, as
the final Gabor-based feature vector is formed by concatenating
the Gabor convolution output for several orientations and frequen-
cies, leading thus, to a very large dimensional feature vector if the
initial size is kept. Consequently, the next processing step (PCA)
might be computational intractable. Therefore, a gross dimension-
ality reduction is necessary step to avoid the computational issue.
The full mammogram database is split into two disjoint sets to
test the generalization ability of the classifier combined with Gabor
features.

We ran experiments for three diagnose cases. The first case
refers to a three-class classification where classes normal, benign
and malign are considered all together. The first set representing
80% samples from the whole database is the set where the three
classes are known and the remaining 20% samples are included in

the test set with unknown classes (labels) that have to be auto-
matically classified. For the second case, samples corresponding to
benign and malign are relabelled into a single class (named here
tumor class), while the tumor-free samples are denoted by normal
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igure 2. Noise-free and noisy mammogram samples. Each two-column depicts 2 s
o  � = 0.1, and �=1, respectively.

ase. This recasts into a normal versus tumor binary classification.
he third case is also a binary class problem, where the task was
ather to discriminate between benign and malign samples, while
he normal samples were discarded from the training and test sets,
espectively.

.2. Quantum noise

MIAS database comprises noise-free image samples. To run
xperiments with noisy mammogram images we  artificially gen-
rated quantum noise from each image intensity. Recall that we
dd noise only to the test mammogram images. The quantum noise
beys a Poisson distribution expressed as:

(p|�, T) = (�T)p · e
−�T

p!
, (5)

here �T = � is the probability of measuring p photons in T seconds,

 is the number of photons emitted (on average) by a source, and
ymbol ! denotes the factorial. The mean and standard deviation
re given respectively by � = �T and � =

√
�T . Two different � val-

es are considered, i.e., � ={0.1, 1, 4}, to generate quantum noise. As

igure 3. Magnitude of Gabor features for one noise-free mammogram image convolved

he  sample corresponds to the left most bottom image from Figure 2.
s for normal, benign and malign cases without noise and with noise corresponding

the noise is image intensity dependent, the 256 gray level mammo-
gram images are rescaled into the pixel value interval proportional
to � values. Figure 2 depicts two noise-free samples for normal,
benign and malign cases along with their noisy samples for those
two  different �.

3.3. Experimental Results for the Three-Class Case

Each image was convolved with several Gabor wavelets. We
have used eight orientations: 0, pi8 ,

�
4 ,

3�
8 ,

�
2 ,

5�
4 ,

3�
4 ,

7�
8 and two

frequency ranges: high frequencies (hfr) with � = 0,1,2 and low
frequencies (lfr) with � = 2,3,4. In addition, we combined all orien-
tations in one larger feature vector for each image. Gabor filtering
leads to complex values. However, we  only took the magnitude
of the convolution results. When lfr (or hfr) and one orientation
is used, 3 output images were formed that have been row-wise

scanned and concatenated to yield a final 2700 - dimensional
feature vector. For lfr (or hfr) and full orientation range, the convo-
lution is applied to 24 Gabor filters, resulting a 86400 - dimensional
vector for each image. Figure 3 depicts the result of the convolution

 with 40 Gabor filters for � = {0, 1, 2, 3, 4} and � =
{

0, pi8 ,
�
4 ,

3�
8 ,

�
2 ,

5�
4 ,

3�
4 ,

7�
8

}
.
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Figure 4. Magnitude of Gabor features for one noisy mam

agnitude for one sample corresponding to the left most bottom
mage from Figure 2, with eight orientations and five frequencies
abor filters. Horizontal, vertical and oblique oriented features are
mphasized after applying Gabor filtering. Low frequencies tend
o stress smooth image areas while high frequencies outline fine
etails in image.

Gabor features were extracted from noisy mammogram patches
s well. Figures 4 and 5 respectively, illustrates the output for the
onvolution of 40 Gabor filters with one noisy image correspond-
ng to different �. Although intense quantum noise is generated,
he Gabor wavelets were able to intrinsically filter the noise, and
mphasize discriminant features in the same time. This can be
oticed by visual comparison of Figure 3 with Figures 4–5,  where

nsignificant modifications are observed.
Once Gabor features were extracted, two novel Gabor based fea-

ure matrices are formed. Let us denote with Xkc and Xuc the matrix

ontaining the Gabor features with known and unknown classes
test matrix) in their columns, respectively. Xkc is a p×258 matrix
nd Xuc is a p × 64 matrix, where p denotes the feature vector size
fter concatenating the Gabor features. Due to high feature vector

Figure 5. Magnitude of Gabor features for one noisy mammo
ram image with � = 0.1, convolved with 40 Gabor filters.

dimension p (recall that, each column of this matrix is a 86400 -
dimensional Gabor feature vector when patch size is 60×60 and
24 Gabor filters are used), PCA was next applied to Xkc matrix for
dimensionality reduction. In a large-scale processing the matrix Xkc

should be much bigger (its number of columns increases as more
samples are added). Gabor + PCA feature vectors (denoted here by
“GabPCA”) that are actually used for classification, were formed
by projecting the zero mean and unit variance data into the PCA
eigenvectors Vr, i.e. FkcGabPCA = V

′
rX
kc , where Vr is the r - rank PCA

projection matrix ansents the transpose operator. Employing PCA
projection, the dimension was  reduced from p to r, where r � p.
The experiments were run for the set r ={5, 10, 20, 30, . . .,  150}.
Whenever a new zero mean unseen patch from the test matrix Xuc

comes, its corresponding feature vector was formed in a similar
way, i.e., fucGabPCA = V

′
xuc . For comparison purpose we carried out

experiments were PCA was solely applied to the initial unfiltered

patch images. Proximal Support Vector Machines [30] with poly-
nomial kernel of degree 1,2 and 3 were used to classify FucGabPCA (or
FucPCA, for unfiltered images) corresponding to unknown patch sam-
ples. As PSVM is typically designed for two - class problem, a “one

gram image with � = 1, convolved with 40 Gabor filters.
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Table 1
The recognition rate expressed in percentage corresponding to noise-free patches
and for different patch size, Gabor features and PCA. The highest RR is in bold. The
rank (r) corresponding to the best RR is given in parenthesis.

Patch size Features Frequency range Orientation RR (%)

0 73.43 (100)
�/8 67.18 (5)
�/4 67.18 (20)
3�/8 68.75 (20)

lfr �/2 68.75 (5)
5�/4 68.75 (20)
3�/4 64.06 (5)
7�/8 75 (80)

GabPCA all 75 (20)
0  65.62 (10)
�/8 68.75 (50)
�/4 64.06 (5)

30×30  3�/8 67.18 (30)
hfr �/2 71.87 (40)

5�/4 67.18 (50)
3�/4 64.06 (5)
7�/8 68.75 (20)
all 71.87 (30)

PCA - - 65.62
0 65.62 (100)
�/8 67.18 (140)
�/4 67.18 (110)
3�/8 67.18 (30)

lfr �/2 68.75 (110)
5�/4 67.18 (5)
3�/4 64.06 (20)
7�/8 68.75 (40)

GabPCA all 68.75 (30)
0 64.06 (5)
�/8 62.50 (30)
�/4 65.62 (5)

60×60  3�/8 68.75 (140)
hfr �/2 65.62 (5)

5�/4 64.062 (50
3�/4 65.62 (10)
7�/8 67.18 (110)
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a recognition rate of 84.37%, 97.56% as sensitivity and 60.86% as
specificity. The highest AUC corresponds to 0.79%. As noise is added
to the image samples, the RR decreases for all cases. However,
GabPCA features seem to be more robust to noise compared to the

Table 2
The recognition rate expressed in percentage corresponding to noisy patches with
�  = 0.1 and for different patch size, Gabor features and PCA. The highest RR is in bold.
The rank (r) corresponding to the best RR is given in parenthesis.

Patch size Features Frequency range Orientation RR (%)

0 65.62 (50)
�/8 65.62 (40)
�/4 64.06 (5)
3�/8 65.62 (30)

lfr �/2 64.06 (5)
5�/4 64.06 (5)
3�/4 67.18 (5)
7�/8 64.06 (5)

GabPCA all 64.06 (5)
0  64.06 (5)
�/8 64.06 (5)
�/4 64.06 (5)

30×30  3�/8 64.06 (5)
hfr �/2 65.62 (5)

5�/4 64.06 (5)
3�/4 64.06 (5)
7�/8 64.06 (5)
all 64.06 (5)

PCA  - - 62.05
0 64.06 (5)
�/8 64.06 (5)
�/4 64.06 (5)
3�/8 64.06 (30)

lfr �/2 66.65 (5)
5�/4 64.06 (5)
3�/4 64.06 (5)
7�/8 64.06 (5)

GabPCA all 64.06 (5)
0 64.06 (5)
�/8 64.06 (5)
�/4 64.06 (5)

60×60  3�/8 64.06 (5)
hfr �/2 64.06 (5)

5�/4 64.06 (5)
all 68.75 (1100
PCA - - 67.11

gainst all” strategy was applied for our three - class problem. Prior
o the test phase, PSVMs were trained using FkcGabPCA (or FkcPCA) from
nown class data set. We  should note that each SVM was sepa-
ately trained (to acquire its optimum separating hyperplane) for
ach case.

The classification performance was measured in terms of recog-
ition rate (RR), defined as the percentage of correctly classified
amples, i.e., {l̃(fucGabPCA) = l(fucGabPCA)}, where l̃ is  the predicted label
classifier output) and l is the actual label for the test mammo-
ram image. Tables 1–3 summarize the results for different Gabor
eatures coupled with PCA based dimensionality reduction cor-
esponding to 30×30 and 60×60 pixel patches, respectively, and
or noise-free and noisy mammogram images. The results attained
hen PCA was directly applied to the unfiltered images are also

eported in those Tables.
The recognition rate is an overall measurement of the approach

erformance without pointing out to the error type. On the con-
rary, the confusion matrix provides us information with respect to
alse positive and false negatives as well as the type of misclassifi-
ations. More precisely, the confusion matrix is the matrix whose
iagonal entries are the number of mammogram patches that are
orrectly classified, while the off-diagonal entries correspond to
isclassification. The rows of the matrix describe the actual (cor-

ect) class labels and its columns the predicted ones. False negatives

FN) could lead to death while false positives (FP) have a high cost
nd could cause detrimental effects on patients. For automatic med-
cal image classification, the rate of false negatives has to be very
ow if not zero. A false positive detection causes an unnecessary
essing and Control 6 (2011) 370– 378 375

biopsy. In a false negative detection, an actual tumor remains unde-
tected and could lead to higher costs or, ultimately, to the cost of
the life of the patient. Tables 4–6 tabulates the confusion matrix for
the results corresponding to the optimum parameters with noise-
free and noisy images. For the normal case we  have one FP where
the sample was misclassified as benign while it’s normal. Eight FNs
correspond to the case when the samples were wrongly classified
as normal while their correct class is associated to the benign case.
The most crucial FNs are the ones corresponding to the first column
last row of Table 4 where three malign samples were misclassified
as normal tissue.

As Table 5 indicates, 5 more samples are misclassified as normal
tissue while actually being malign, for �=0.1.

3.4. Experimental Results for the Normal versus Tumor Case

When running the normal versus tumor case, the results
depicted in Table 7 are obtained. Apart from the overall recog-
nition rate, three more classification measures are reported,
namely, sensitivity, specificity and area under the receiver opera-
tor characteristic (AUC). Sensitivity and specificity are described as
Sn = TP/(TP + FN), and Sp = TN/(TN + FP), where TP denotes true posi-
tive, and TN stands for true negative.

The optimum result corresponds to the GabPCA features with
3�/4 64.06 (5)
7�/8 64.06 (5)
all 64.06 (5)

PCA  - - 65.02
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Table  3
The recognition rate expressed in percentage corresponding to noisy patches with
�  = 1 and for different patch size, Gabor features and PCA. The highest RR is in bold.
The rank (r) corresponding to the best RR is given in parenthesis.

Patch size Features Frequency range Orientation RR (%)

0 68.75 (10)
�/8 67.18 (5)
�/4 64.06 (5)
3�/8 64.06 (5)

lfr �/2 64.06 (5)
5�/4 64.06 (5)
3�/4 65.62 (5)
7�/8 65.62 (30)

GabPCA all 64.06 (5)
0 64.06 (5)
�/8 64.06 (5)
�/4 64.06 (5)

30×30  3�/8 64.06 (5)
hfr �/2 67.18 (5)

5�/4 64.06 (5)
3�/4 64.06 (5)
7�/8 64.06 (5)
all 64.06 (5)

PCA - - 62.05
0 64.06 (5)
�/8 64.06 (5)
�/4 64.06 (5)
3�/8 64.06 (5)

lfr �/2 66.65 (30)
5�/4 64.06 (5)
3�/4 64.06
7�/8 64.06 (5)

GabPCA all 64.06 (5)
0 64.06 (5)
�/8 64.06 (5)
�/4 64.06 (5)

60×60  3�/8 64.06 (5)
hfr �/2 65.62 (10)

5�/4 64.06 (5)
3�/4 64.06 (5)
7�/8 64.06 (5)
all 64.06 (5)

PCA - - 64.06

Table 4
Confusion matrix for noise-free 30×30 image patches, lfr,  all orientations and 20
PCs.

predicted class
normal benign malign

true normal 40 1 0
class benign 8 2 3

malign 3 1 6

Table 5
Confusion matrix for noisy 30×30 image patches (� = 0.1), lfr,  orientation = 3�/4 and
5  PCs.

predicted class
normal benign malign

true normal 41 0 0
class benign 11 1 1

malign 9 0 1

Table 6
Confusion matrix for noisy 30×30 image patches (� = 1), lfr,  orientation = 0 and 10
PCs.

predicted class
normal benign malign

true normal 41 0 0
class benign 10 1 2

malign 7 1 2

Table 7
Sensitivity (Se), specificity (Sp) and area under the ROC curve (AUC) for the 30×30
and  60×60 image patches, respectively, corresponding to the case normal versus
tumor.

Image size Image type Method RR Sn Sp AUC

noise-free GabPCA 84.37 (10) 97.56 60.86 0.79
PCA 73.43 (120) 97.56 30.43 0.77

30×30  � = 0.1 GabPCA 73.43 (90) 75.60 69.56 0.77
PCA 66.75 (80) 70.48 43.47 0.69

�  = 1 GabPCA 76.56 (130) 75.60 78.26 0.78
PCA 71.87 (5) 60.97 39.13 0.51

noise-free GabPCA 75 (90) 92.68 40 0.70
PCA 75 (150) 97.56 34.78 0.78

60×60  � = 0.1 GabPCA 67.18 (10) 88.05 70.23 0.69
PCA 73.43 (140) 78.04 65.21 0.77

�=1 GabPCA 67.18 (10) 78.04 65.21 0.77

PCA 75.00 (100) 80.48 65.21 0.77

Highest recognition rate is in bold.

pure PCA features for the 30×30 image patches. Interestingly, a
larger patch size (60×60) weakens the RR for the GaborPCA.

3.5. Experimental Results for the Benign versus Malign Case

Table 8 shows the output for the the benign versus malign case.
The results are in trend with the other two cases, i.e., GabPCA fea-
tures turn out to be more robust against noise compared to pure
PCA features and seem to possess more discriminative power.

3.6. Discussions

Considering the experimental results, the following discussions
can be drawn:

• Increasing the patch size from 30×30 to 60×60 does not help
the classification performance for the GabPCA features. Rather,
an increase in image resolution conducts to a decrease in the
recognition rate, at least for the GabPCA features.

• Low frequency range possesses more discriminant power than
the high frequency range for all cases, when GabPCA features are
employed to 30×30 image patches. As image patch size increases
to 60×60, the difference between RR for low and high frequency
range shrinks, emphasizing the contribution of details (com-
prised in the high frequency range). However, overall, the highest
recognition rate is due to the low frequency range.
• Generally, using all Gabor wavelet feature orientations improved
the recognition rate. This is not surprising as many features are
oriented towards many spatial directions.

Table 8
Sensitivity (Se), specificity (Sp) and area under the ROC curve (AUC) for the 30×30
and  60×60 image patches, respectively, corresponding to the case benign versus
malign.

Image size Image type Method RR Sn Sp AUC
noise-free GabPCA 78.26 (80) 84.61 80 0.78

PCA 56.52 (80) 76.92 30 0.57
30×30  � = 0.1 GabPCA 69.56 (30) 46.15 70 0.60

PCA 65.21 (50) 76.92 50 0.64
�=1 GabPCA 69.56 (20) 76.92 50 0.67

PCA 65.21 (40) 76.92 50 0.63
noise-free GabPCA 69.56 (10) 30.07 80 0.70

PCA 56.52 (40) 74.22 10 0.55
60×60  �=0.1 GabPCA 69.56 (10) 54.61 40 0.66

PCA 60.86 (70) 53.84 70 0.63
�=1 GabPCA 69.56 (10) 75.92 40 0.68

PCA 69.56 (50) 69.23 70 0.65

Highest recognition rate is in bold.
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Considering the normal versus tumor case, promising results
were accomplished. We  should stress here that, adding more rep-
resentative tumor-free and tumor samples in the SVM training
procedure would likely to increase the specificity associated to
this case.
As far as the benign versus malign case is concerned, the recog-
nition rate would definitely get higher with an increase in the
samples number. Similar benign and malign patterns made the
recognition quite difficult. This was reflected into the SVM ker-
nel’s degree. More precisely, the best results correspond to the
polynomial or cubic kernel, indicating a nonlinear separating
hyperplane between benign and malign features.
Overall, GabPCA features tend to lead to superior classifica-
tion performance compared to the features solely based on PCA
decomposition.
The experimental results revealed the fact that the GabPCA fea-
tures are less sensitive to the noise level compared to the PCA
features extracted from noisy row image patches. In addition, low
frequency range is more robust to noise, due to the fact that, as
expected, noise mainly affects the high frequency image compo-
nents.

. Conclusions

Digital mammograms are among the most difficult medical
mages to be read due to the low tissue image contrast and slight
erceptible differences. Gabor features obtained by convolving

mage patches representing tumor or tumor-free areas with sev-
ral Gabor filters are employed in this paper for recognizing three
issue types (normal, benign and malign) in automatic way, from
igital mammograms. This task is very challenging even for medi-
al specialists. From the human observer (physician) point of view,
he distinction between benign and malign tumor types is very ill-
efined in terms of visual inspection, since what usually a physician
oes is to ask for further analysis including other more relevant
ests (biopsy) for characterizing the tumor as benign or malign. It
as reported that 65 to 90% of the biopsies of suspected cancers

urn out to be benign [31,32]. Two recent papers that are closely
elated to our work and involve de same database are worth to
ention here. The first one is the work of Verma et al. [33], where

 novel classification scheme is proposed to distinguish between
align and benign cases. However, the work did not focus the fea-

ure extraction procedure and rather dealt with the learning part.
he second work attributed to Islam et al. [34] reported a value
f 60.91% for the sensitivity and 83.87% for the specificity for the
align versus benign case. Both reported values are higher than the

nes yielded from our experiments. It is difficult to have a direct and
air comparison as the experiment setup differs. For instance, they
nly used a subset of 69 correctly segmented samples. Also, differ-
nt samples might have been picked up to form the training and
est set. However, our results also outperform the radiologist sen-
itivity reported as being 75%. For the normal versus tumor case,
hough the specificity obtained is relatively low, a very promising
alue for the sensitivity as achieved. We  believe that, by intro-
ucing more (representative) tumor samples would improve the
pecificity value.

Summarizing, two main conclusions can be drawn from our
xperiments. Firstly, Gabor features seem to possess more discrim-
native power than PCA features which are largely used for this
ask in the literature. Unlike PCA features (derived from unfiltered
mages), Gabor features are more robust to quantum noise, noise

hat typically may  occur when X-ray images are acquired. Techni-
ally, as indicated by our experiments, Gabor features have proven
o be less insensitive to noise with Poisson distribution even for
arge noise level.

[

[
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